B.Sc. INDUSTRIAL CHEMISTRY

DEGREE COURSE
CBCS PATTERN
(With effect from 2012 - 2013)

The Course of Study and the Scheme of Examinations

<table>
<thead>
<tr>
<th>S.NO.</th>
<th>Part</th>
<th>Study Components</th>
<th>Course Title</th>
<th>Ins. hrs /week</th>
<th>Credit</th>
<th>Title of the Paper</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SEMESTER I</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>Language</td>
<td>Paper-1</td>
<td>6</td>
<td>4</td>
<td>Tamil/Other Languages</td>
<td>25 75 100</td>
</tr>
<tr>
<td>2</td>
<td>II</td>
<td>English</td>
<td>Paper-1</td>
<td>6</td>
<td>4</td>
<td>English</td>
<td>25 75 100</td>
</tr>
<tr>
<td>3</td>
<td>III</td>
<td>Core Theory</td>
<td>Paper-1</td>
<td>6</td>
<td>6</td>
<td>General Chemistry – I</td>
<td>25 75 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Core Practical</td>
<td>Practical-1</td>
<td>3</td>
<td>0</td>
<td>Volumetric Analysis</td>
<td>0 0 0</td>
</tr>
<tr>
<td>4</td>
<td>III</td>
<td>Allied -1</td>
<td>Paper-1</td>
<td>4</td>
<td>4</td>
<td>Industrial Chemistry – I</td>
<td>15 60 75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Allied Practical</td>
<td>Practical-1</td>
<td>3</td>
<td>0</td>
<td>Industrial Chemistry Practical I & II</td>
<td>0 0 0</td>
</tr>
<tr>
<td>5</td>
<td>IV</td>
<td>Environmental Studies</td>
<td>2</td>
<td>2</td>
<td>Environmental Studies</td>
<td>10 40 50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30 20 425</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SEMESTER II</td>
</tr>
<tr>
<td>6</td>
<td>I</td>
<td>Language</td>
<td>Paper-2</td>
<td>6</td>
<td>4</td>
<td>Tamil/Other Languages</td>
<td>25 75 100</td>
</tr>
<tr>
<td>7</td>
<td>II</td>
<td>English</td>
<td>Paper-2</td>
<td>4</td>
<td>4</td>
<td>English</td>
<td>25 75 100</td>
</tr>
<tr>
<td>8</td>
<td>III</td>
<td>Core Theory</td>
<td>Paper-2</td>
<td>6</td>
<td>6</td>
<td>General Chemistry – II</td>
<td>25 75 100</td>
</tr>
<tr>
<td>9</td>
<td>III</td>
<td>Core Practical</td>
<td>Practical-1</td>
<td>3</td>
<td>3</td>
<td>Volumetric Analysis</td>
<td>40 60 100</td>
</tr>
<tr>
<td>10</td>
<td>III</td>
<td>Allied-1</td>
<td>Paper-2</td>
<td>4</td>
<td>4</td>
<td>Industrial Chemistry – II</td>
<td>15 60 75</td>
</tr>
<tr>
<td>11</td>
<td>III</td>
<td>Allied Practical</td>
<td>Practical-1</td>
<td>3</td>
<td>2</td>
<td>Industrial Chemistry Practical I & II</td>
<td>10 40 50</td>
</tr>
<tr>
<td>12</td>
<td>IV</td>
<td>Value Education</td>
<td>2</td>
<td>2</td>
<td></td>
<td>Soft skill</td>
<td>10 40 50</td>
</tr>
<tr>
<td>13</td>
<td>IV</td>
<td>Soft Skill</td>
<td>2</td>
<td>1</td>
<td></td>
<td>Value Education</td>
<td>10 40 50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30 26 625</td>
</tr>
<tr>
<td>S.NO.</td>
<td>Part</td>
<td>Study Components</td>
<td>Course Title</td>
<td>Ins. hrs /week</td>
<td>Credit</td>
<td>Title of the Paper</td>
<td>Maximum Marks</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>------------------</td>
<td>--------------</td>
<td>----------------</td>
<td>--------</td>
<td>-------------------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CIA</td>
<td>Uni. Exam</td>
</tr>
<tr>
<td>28</td>
<td>III</td>
<td>Core Theory</td>
<td>Paper-5</td>
<td>4</td>
<td>4</td>
<td>Inorganic Chemistry – I</td>
<td>25 75 100</td>
</tr>
<tr>
<td>29</td>
<td>III</td>
<td>Core Practical</td>
<td>Practical-3</td>
<td>3</td>
<td>0</td>
<td>Gravimetric Analysis</td>
<td>0 0 0</td>
</tr>
<tr>
<td>30</td>
<td>III</td>
<td>Core Theory</td>
<td>Paper-6</td>
<td>4</td>
<td>4</td>
<td>Organic Chemistry – I</td>
<td>25 75 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Practical-4</td>
<td>3</td>
<td>0</td>
<td>Qualitative Analysis and Preparations</td>
<td>0 0 0</td>
</tr>
<tr>
<td>31</td>
<td>III</td>
<td>Core Theory</td>
<td>Paper-7</td>
<td>4</td>
<td>4</td>
<td>Physical Chemistry – I</td>
<td>25 75 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Practical-5</td>
<td>3</td>
<td>0</td>
<td>Physical Chemistry Experiments</td>
<td>0 0 0</td>
</tr>
<tr>
<td>32</td>
<td>III</td>
<td>Core Practical</td>
<td>Practical-6</td>
<td>3</td>
<td>0</td>
<td>Industrial Chemistry Practicals</td>
<td>0 0 0</td>
</tr>
</tbody>
</table>

B.Sc. Industrial Chemistry: Syllabus (CBCS)
B.Sc. Industrial Chemistry: Syllabus (CBCS)

<table>
<thead>
<tr>
<th>S.NO.</th>
<th>Part</th>
<th>Study Components</th>
<th>Course Title</th>
<th>Ins. hrs /week</th>
<th>Credit</th>
<th>Title of the Paper</th>
<th>Maximum Marks</th>
</tr>
</thead>
</table>
| 31 | III | Elective | Paper-1 | 3 | 3 | A. Spectroscopy – I
B. Basics of Computer Programming in C and its Applications in Chemistry
C. Organic Synthesis | 25 75 100 |
| 32 | IV | Skill Based Subject | Paper - 3 | 3 | 3 | Data Analysis and Separation Techniques | 15 60 75 | | | | |
| | | | | | | **SEMESTER VI** | |
| | | | | | | **|** CIA | Uni. Exam | Total **|** | |
| 33 | III | Core Theory | Paper-8 | 3 | 3 | Inorganic Chemistry – II | 25 75 100 |
| 34 | III | Core Practical | Practical-3 | 3 | 3 | Gravimetric Analysis | 40 60 100 |
| 35 | III | Core Theory | Paper-9 | 3 | 3 | Organic Chemistry – II | 25 75 100 |
| 36 | III | Core Practical | Practical-4 | 3 | 3 | Organic Analysis | 40 60 100 |
| 37 | III | Core Theory | Paper-10 | 3 | 3 | Physical Chemistry – II | 25 75 100 |
| 38 | III | Core Practical | Practical-5 | 3 | 3 | Physical Chemistry Practicals | 10 40 50 |
| | | | Practical-6 | 3 | 3 | Industrial Chemistry Practicals | 10 40 50 |
| 39 | III | Elective | Paper-2 | 3 | 3 | A. Pharmaceutical Chemistry
B. Polymer Chemistry
C. Green Chemistry | 25 75 100 |
| 40 | III | Elective | Paper-3 | 3 | 3 | A. Spectroscopy - II
B. Applied Chemistry
C. Nanochemistry | 25 75 100 |
| 41 | IV | Skill based Subject | Paper-4 | 3 | 3 | Agriculture and Leather Chemistry | 15 60 75 |
| 42 | V | Extension Activities | | - | 1 | Extension Activities | 10 40 50 |
| **TOTAL** | | | | **30** | **31** | **250**
675
925 |
<table>
<thead>
<tr>
<th>Part</th>
<th>Subject</th>
<th>Papers</th>
<th>Credit</th>
<th>Total credits</th>
<th>Marks</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part I</td>
<td>Languages</td>
<td>4</td>
<td>4</td>
<td>16</td>
<td>100</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>English</td>
<td>4</td>
<td>4</td>
<td>16</td>
<td>100</td>
<td>400</td>
</tr>
<tr>
<td>Part II</td>
<td>Allied (Odd Semester)</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>75</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Allied (Even Semester)</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>75</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Allied Practical (Even Semester)</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Electives</td>
<td>3</td>
<td>3</td>
<td>9</td>
<td>100</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>Core (Theory & Practicals)</td>
<td>15</td>
<td>(3-7)</td>
<td>57</td>
<td>100</td>
<td>1500</td>
</tr>
<tr>
<td>Part IV</td>
<td>Environmental Science</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Soft skill</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Value Education</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Lang. & Others/NME</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Skill Based</td>
<td>4</td>
<td>3</td>
<td>12</td>
<td>75</td>
<td>300</td>
</tr>
<tr>
<td>Part V</td>
<td>Extension</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>42</td>
<td></td>
<td>140</td>
<td></td>
<td>3600</td>
</tr>
</tbody>
</table>
Objective:

Basic concepts regarding atomic structure, periodic properties, bonding concepts, ionic bond, VSEPR and MO theories, nomenclature of organic compounds, hybridization, reaction intermediates, quantum theory, gases, principles of volumetric analysis, related problems, and applications wherever necessary are to be taught for I-Semester.

UNIT-I

1.1 Atomic structure - Quantum numbers n, l, m and s - Pauli exclusion principle - Energy distribution and orbitals - Hund’s rule of maximum multiplicity - Aufbau's principle - Electronic configurations of elements - Stability of half-filled and completely filled orbitals.

1.2 Classification of elements – General characteristics of s, p, d and f block elements - Periodicity of properties- Definition and periodicity of the following properties- Atomic radii - factors affecting atomic radii - Ionic radii - factors affecting ionic radii.

1.3 Ionization potential - factors affecting ionization potential - Electron affinity - factors affecting electron affinity - Electronegativity - factors affecting electronegativity - Pauling scale - Mulliken electronegativity scale – Applications of electronegativity regarding bonding nature.

UNIT-II

2.1 Ionic bond - Conditions for the formation of ionic bond - General properties - Energetics of formation of NaCl from Na⁺ and Cl⁻. Hydration energy and lattice energy and their applications
B.Sc. Industrial Chemistry: Syllabus (CBCS)

2.2 VSEPR theory - geometries of BO_3^{3-}, NH_4^+, ClF_3, PCl_5, IF_7, and XeF_6 molecules - partial ionic character of covalent bond - percentage of ionic character - Hanny and Smyth equation.

2.3 Molecular Orbital theory - Bonding, anti-bonding orbitals - Relative order of energies of molecular orbitals - MO diagrams of H_2, He_2, O_2, O_2^+, O_2^- and CO - Bond order - stability and magnetic property of the molecules - Comparison of VB and MO theories.

UNIT-III

3.1 Classification of organic compounds - Nomenclature of organic compounds - Functional groups - Homologous series - IUPAC recommendations for naming simple aliphatic and alicyclic compounds.

3.3 Cleavage of bonds - Homolytic and Heterolytic fission of carbon-carbon bond - Methods for determining reaction mechanism - Reaction intermediates - Structure and stability of Carbocations - Carbanions and Free radicals.

UNIT-IV

4.2 Schrodinger wave equation (without derivation) - significance of wave functions, ψ and ψ^2 - probability distribution of electrons - radial probability distribution curves.

4.3 Gaseous state - Kinetic gas equation - derivation - Gas laws from the kinetic gas equation - Kinds of velocities - mean, rms, most probable velocities - Calculation of molecular velocities,
Maxwell's distribution of molecular velocities (no derivation) - Effect of temperature on velocity distribution. Equipartition of energy - heat capacity and molecular basis - Virial equation of state - Boyle temperature - coefficient of compressibility and thermal expansion.

UNIT-V

5.1 Definitions of molarity - normality - molality and mole fraction - their calculations - definition and examples for primary and secondary standards. Calculation of equivalent weight of acid, base, oxidizing agent, reducing agent and salt. Principle of Volumetric Analysis.

5.2 Theories of acid-base - red-ox - complexometric, iodometric and iodimetric titrations.

5.3 Theories of indicators - acid-base indicators-choice of indicators - redox - metal ion and adsorption indicators.
ALLIED – 1

PAPER – 1

INDUSTRIAL CHEMISTRY – I

Objectives:

UNIT-I
1.1 INORGANIC CEMENTING MATERIALS - Introduction - Lime and its manufacture - Gypsum
 Plaster - Cement - Types of cement. - Chemical Composition
1.2 Manufacture of Portland cement - Chemical Composition of Portland Cement - Setting and Hardening of Portland Cement. Heat of Hydration of Cement - Special Cement – Concrete and RCC - Decay of Concrete.

UNIT-II
2.2 Plasticity of Clay - White wares - Glazing - applications - Earthenware’s and stoneware’s – Optical Fibers.

UNIT-III
3.1 REFRACTORIES - Introduction - Classification - Manufacture of Refractories - Cermets -
 Insulating refractories - Requirements of a refractory.

UNIT-IV
4.2 Preparation of adhesives - Synthetic resin adhesives – Rubber based adhesives - Cellulose and silicate adhesives - Uses of adhesives.

UNIT-V

5.1 Abrasives - introduction - Natural Abrasives - Artificial Abrasives – Grinding Wheels.

SEMESTER II

PAPER – 2

GENERAL CHEMISTRY – II

Objectives:

Basic knowledge on alkanes, alkenes, alkynes, cyclo alkanes, dienes, thermochemistry, basic concepts in thermodynamics, first law, derivation of equations, related problems, s and p block elements, group study, mechanism, applications wherever necessary are to be taught for II-Semester.

UNIT-I

1.1 Alkali metals - Li, Na, K, Rb and Cs - Occurrence - Comparative study of elements - oxides, halides, hydroxides and carbonates - Exceptional property of Lithium - Diagonal relationship of Li with Mg.

1.2 Alkaline earth metals - Be, Mg, Ca, Sr and Ba - Occurrence - comparative study of the elements with respect to oxides, hydroxides, halides, sulphates and carbonates - Exceptional property of Beryllium - Diagonal relationship of Be with Al - Comparison of alkaline earth metals with alkali metals - Magnesium acting as bridge element between IIA and IIB groups - Magnesium resembles zinc.

1.3 p-block elements - Boron family - group discussion - anomalous behavior of Boron - diagonal relationship between B and Si - Electron deficiency and electron acceptor behaviour of Boron trihalides - bonding (hydrogen-bridge structure) in diborane.

UNIT-II

2.2 Addition reactions of alkenes with mechanism- addition of hydrogen, halogens, hydrogen halide (Markownikoff's rule), hydrogen bromide (peroxide effect), sulphuric acid, water, BH\textsubscript{3}, O\textsubscript{3}, hydroxylation with KMnO\textsubscript{4} - allylic substitution by NBS.

2.3 Alkynes - Acidity of alkynes - Addition of hydrogen - Hydroboration - Hydrohalogenation - Addition of hypohalous acid, Hydration - addition of water with HgSO\textsubscript{4} catalyst - Addition of alcohols and carboxylic acids - oxidation with KMnO\textsubscript{4} - ozonolysis - formation of acetylides.

UNIT-III

3.1 Cycloalkanes - preparation using Wurtz's reaction - Dieckmann's ring closure and reduction of aromatic hydrocarbons - Substitution and ring opening reactions.

3.2 Bayer's strain theory - theory of strainless rings. Dienes – Classification - conjugated, isolated and cumulative- stability of dienes.

3.3 1:2 and 1:4 addition reactions of H\textsubscript{2} and HX with mechanisms –Synthesis of dienes - 1:3 butadiene, Isoprene and chloroprene. Diels Alder reaction.

UNIT-IV

4.3 Thermodynamics - Definition and explanation of terms - System, boundary, surroundings - Homogeneous and heterogeneous system - Isolated system - Closed system - Open system - Intensive and extensive properties - State of a system - Independent state variables - Dependent state variables - Thermodynamic functions - State and path functions.

UNIT-V

5.2 First law of thermodynamics - statement and equation - Cp, Cv relationship - calculation of W, Q, ΔE and ΔH for the expansion of ideal gases under reversible - isothermal and adiabatic conditions.

5.3 Thermochemistry - Heat of reaction - Exothermic and endothermic reaction - Calculation of ΔH from ΔE and vice versa - Thermochemical equations - bond dissociation energy - calculation from thermochemical data - variation of heat of a reaction with temperature - Kirchoff’s equation and its significance.
CORE PRACTICAL
PAPER – 1 & 2
VOLUMETRIC ANALYSIS

Acidimetry
1. Estimation of borax - Standard Sodium Carbonate
2. Estimation of Sodium Hydroxide - Standard Sodium Carbonate

Iodometry
4. Estimation of Copper - Standard Copper sulphate
5. Estimation of Potassium dichromate - Standard Potassium dichromate

Complexometry
6. Estimation of Magnesium using EDTA.
7. Estimation of Zinc using EDTA

Dichrometry
8. Estimation of ferrous iron using Diphenyl amine / N-Phenylanthranillic acid as indicator.

Precipitation titration
9. Estimation of Chloride in neutral medium. (Demonstration - experiment)

Permanganometry
10. Estimation of ferrous sulphate – Standard FAS.

Students must write short procedure for the given estimation in ten minutes during the examination and submit the paper for evaluation.
ALLIED – 1
PAPER – 2
INDUSTRIAL CHEMISTRY – II

Objectives:

Elaborate study of Fuels Introduction - classification - preparation - properties - their sources of energy - storage - alternate fuels - applications

UNIT-I

1.2 Coal - Classification of Coal by Rank - Selection of Coal - Analysis of Coal and its significance

UNIT-II

2.1 Types of coking - Types of Carbonization of Coal - Role of Sulphur in Coal - Role of Ash in Coal

UNIT-III

3.1 Liquid fuels - Petroleum - Cracking - Advantages of catalytic cracking over thermal cracking - Synthetic Petrol.

3.2 Refining of Gasoline – Reforming - Knocking - Octane number of Gasoline - Diesel Engine Fuels - Diesel - Octane number of Diesel Oil - Diesel index.
UNIT-IV

4.1 Residual fuel oils - Asphalt - Aviation fuel - advantages - Kerosene as a fuel.

4.2 Analysis and testing of liquid and gaseous fuels - Utilization of fuels - Solar power.

UNIT-V

5.1 Other sources of energy – Electricity Power - Modern Concept of Fuel - Fuels for Metallurgy.

5.2 Power Alcohol - Recent Advances In Fuel Technology. Alternative Fuels – Alcohols – Promising Biofuel : An Alternative Source to Diesel and Gasoline - Control of Pollution in Refineries.
ALLIED PRACTICAL

PAPER 1 & 2

INDUSTRIAL CHEMISTRY

WATER TESTING

1. Estimation of total dissolved solids in the given water sample (TDS) (Only for demonstration)
2. Estimation of total suspended solids in the given water sample (TSS) (Only for demonstration)
3. Determination of total permanent and temporary hardness of water using EDTA.
4. Determination of acetic acid in commercial vinegar using NaOH.
5. Determination of alkali content in antacid tablet using Hcl.
7. Limit test for Sulphate
8. Limit test for Chloride
9. Limit test for Iron
10. Limit test for Lead
OBJECTIVE:
Basic concepts regarding principles of inorganic analysis and applications of qualitative analysis, solvents, p-block elements, group study, aromaticity, electrophilic and nucleophilic substitution reactions, elimination reactions, mechanism, second law of thermodynamics, derivation of equations, related problems, applications wherever necessary.

UNIT-I
1.1 Semimicro techniques - Principles of acid-base equilibria - common ion effect - solubility product and their applications in qualitative analysis.
1.2 Principles of inorganic analysis - Reactions involved in the separation and identification of cations and anions in the analysis - Spot test reagents-Aluminon, Cupferon, DMG, Thiourea, Magneson, Alizarin and Nessler's reagent.
1.3 Types of solvents - Protic and aprotic solvents - Amphi-protic / amphoteric solvent - aqueous and non-aqueous solvents - Liquid ammonia as solvent.

UNIT-II
2.2 Nitrogen family - Comparative study of N, P, As, Sb and Bi - elements - oxides - oxyacids - halides and hydrides.
2.3 Oxygen family - Comparative study of O, S, Se and Te-elements - catenation - oxides- halides - hydrides and oxy acids - anomalous behaviour of oxygen.
UNIT-III

3.1 Aromaticity - Modern theory of aromaticity - Huckel's (4n +2) rule and its simple applications to benzenoid and non benzenoid systems.

3.2 Electrophilic substitution reactions in aromatic compounds - mechanisms of nitration - halogenation - sulphonation - Friedel-Craft's acylation and alkylation.

3.3 Aliphatic nucleophilic substitutions - Mechanisms of S_N1, S_N2 and S_Ni reactions - effects of structure of substrate - solvent - nucleophile and leaving groups.

UNIT-IV

4.1 Elimination reactions - mechanisms of E1 and E2 reactions - Hoffmann and Saytzeff's rules - Cis and trans eliminations.

4.2 Aromatic nucleophilic substitutions - Unimolecular nucleophilic substitution - mechanism - Bimolecular nucleophilic substitution - mechanism.

4.3 Directive influence - Orientation - Ortho/para ratio - Nuclear and side chain halogenations.

UNIT-V

5.1 Second law of thermodynamics - Need for the II law - Spontaneous process - Criteria of spontaneity - different forms of statements of the second law - Cyclic process - Heat engines.

5.2 Carnot's cycle - Efficiency - Carnot's theorem (statement only) - Concept of entropy - Definition and mathematical statement - Randomness and entropy.

5.3 Standard entropy -Derivation of entropy from Carnot cycle - entropy change of an ideal gas during isothermal process - Entropy changes in cyclic - reversible and irreversible processes.
ALLIED – 2

PAPER – 3

INDUSTRIAL CHEMISTRY – III

UNIT-I

1.2 Mechanism of Addition Polymerization - Cationic - Anionic polymerization - Free radical and Co-ordination or Ziegler-Natta polymerization.

UNIT-II

2.1 Physical and Mechanical Properties of Polymers - Crystallinity in Polymer - Polymer Reaction.
2.2 Polymer structure and properties - Strength, plastic deformation - chemical resistance - Physical state of polymer - GlassTransition Temperature

UNIT-III

3.2 Synthetic rubbers - Preparation and applications of SBR - Butyl rubber - Nitrile rubber - Neoprene and Silicone rubber.

UNIT-IV

4.1 Plastic Materials – Classification of Plastics (or Resins) - Moulding Constituents of a Plastic - Fabrication techniques used for thermoplastic resin (Moulding process).
4.2 Important Thermoplastic Resins – Natural resins - Polyethylene - PVC
UNIT-V

5.1 Important thermosetting resins - Phenol Formaldehyde Resin or Pheonolic Resin – Amino Resins and Plastics - Epoxy Resins - Acrylic Resins and Plastics - Polyester resins.

5.2 Silicone Resins – Silicone fluids – Silicone greases – Polyurethane’s - Foamed or cellular plastics.
SKILL BASED SUBJECT

PAPER – 1

WATER TREATMENT AND ANALYSIS

Objective:

To learn about various methods of treatment and analysis of water.

UNIT-I

1.1 Introduction - characteristics of water - alkalinity - hardness - unit of hardness - Total solids - Oxidation - transparency - Silica content.

1.2 Purification of water for drinking purpose - potability of water - clarification - coagulation - contact & electro chemical coagulation - sterilization & disinfection of water - precipitation - aeration - ozonisation - Chlorination.

UNIT-II

2.1 Water softening methods - Clark’s process - lime soda process - modified lime soda process - permutit or zeolite process - Ion exchange process - demineralization of water.

2.2 Determination of hardness of water - Titration method - complexometric method using EDTA - expressing hardness - equivalents of calcium carbonate - problems to determine temporary & permanent hardness.

UNIT-III

3.1 Hard water and industries - industrial water treatment - boiler feed water method of softening - prevention of plumbo solvency - scales in boilers - consequences - internal conditioning methods.

3.2 Desalination of brackish water - elecrodiaysis - Reverse osmosis - removal of Fe, Mn and Silicic acid - effluent treatment of water from paper industry, petrochemical, fertilizer industry and power station.
UNIT-IV

4.1 Water analysis - sampling of water for analysis - chemical substances affecting potability - colour, turbidity odour, taste, temperature, pH and electrical conductivity.

4.2 Analysis of solids present in water - suspended solids - dissolved solids - total acidity - alkalinity - free CO₂ - free chlorine - Ca, Mg, Fe, Mn, Ag & Zn.

UNIT-V

5.1 Analysis of chemical substances affecting health - NH₃, Nitrate, Nitrite, cyanide, sulphate, sulphide, chloride, fluoride - measurement of toxic chemical substances - analysis of chemical substances indicative of pollution - Dissolved oxygen - Bio Chemical Oxygen Demand (BOD) - Chemical Oxygen Demand (COD)

5.2 Bacteriological examination of water - total count test - E.coli test - E.coli index - most probable number method - Biological examination of water - physical examination of water - radioactivity of water - methods of removing radioactivity from water.

Reference Books:

1. Industrial Chemistry (including chemical - engineering) - B.K. Sharma - Goel publishing house, Meerut.

NON-MAJOR ELECTIVE

PAPER – 1

MEDICINAL CHEMISTRY

Objectives:

➢ To learn the basic idea of drugs and name of common drugs
➢ To learn about BP, diabetics etc

UNIT-I: CLINICAL HEALTH AND BIOCHEMICAL ANALYSIS

UNIT-II: COMMON DRUGS

Antibiotics, Antipyretics, Analgesics, Anti-inflammatory agents, Sedatives, Antiseptics, Antihistamines, Tranquilizers, Hypnotics and Antidepressant drugs - Definition, examples, uses and side effects.

UNIT-III: VITAL AILMENTS AND TREATMENT

Blood pressure - hypertension and hypotension, Diabetes, Cancer, AIDS - Causes, symptoms and medicines.

UNIT-IV: INDIAN MEDICINAL PLANTS

Palak, Vallarai, Kizhanelli, Thumbai, Hibiscus, Adadodai, Thoothuvalai, Nochi, Thulasi, Aloe vera - Chemical constituents and medicinal uses.

UNIT-V: FIRST AID AND SAFETY

Reference Books:

3. Rasheeduzz Zafar - Medicinal Plants of India - CBs Publishers and Distributors, 2000
SEMESTER IV
PAPER – 4
GENERAL CHEMISTRY – IV

Objective:
Noble gases, polymerization, polyhydric alcohol, unsaturated alcohols, phenols, preparation, properties, important name reactions, mechanism, thermodynamics, derivation of equations, partial molar properties, chemical potential, related problems, applications.

UNIT-I
1.1 Noble gases - Electronic configurations - position in the periodic table - Chemical inertness of noble gases - reasons
1.2 Clathrates -definition and applications.
1.3 Compounds of xenon - hybridization and geometries of XeF$_2$, XeF$_4$, XeF$_6$ and XeOF$_4$.
 (preparation and properties –not necessary)

UNIT-II
2.1 Polymerization - Types of polymerization - Distinction between addition and condensation polymerization - free radical - cationic and anionic polymerizations
2.2 Mechanism of preparation of polymers - addition polymers and condensation polymers with examples
2.3 Thermoplastic and thermosetting polymers

UNIT-III
3.1 Phenols - acidic character of phenols - Kolbe's reaction - Reimer - Tiemann reaction - Gattermann - Lederer - Manasse and Houben - Hoesh reactions
3.2 Di - and tri-hyrdic phenols - preparation, properties and uses of catechol and pyrogallol.
3.3 Preparation and properties of naphthols.
UNIT-IV

4.1 Entropy changes in physical transformations - Calculation of entropy changes with changes in
T, V and P - entropy of mixing of ideal gases.

4.2 Free energy and work function - Gibbs free energy - Helmholtz work function - their variations
with temperature - pressure and volume - Criteria for spontaneity.

4.3 Gibbs-Helmholtz equations - derivation and applications. Clausius - clapeyron equation -
Derivation and Application.

UNIT-V

5.1 Third law of thermodynamics - Entropy at absolute zero - Planck’s formulation of third law -
Nernst heat theorem - statement of III law of thermodynamics.

5.2 Evaluation of absolute entropy from heat capacity measurements - exceptions to III law -
application of III law.

5.3 Partial molar properties - Chemical potential - Gibbs-Duhem equation - effect of temperature
and pressure on chemical potential.
CORE PRACTICAL

PAPER 3 & 4

INORGANIC QUALITATIVE ANALYSIS AND PREPARATION

Analysis of mixture containing two cations and two anions of which one will be an interfering ion. Semi micro methods using the conventional scheme to be adopted.

Cations to be studied.

Lead, Copper, Bismuth, Cadmium, Iron, Aluminium, Zinc, Manganese, Cobalt, Nickel, Barium, Calcium, Strontium, Magnesium and Ammonium.

Anions to be studied

Carbonate, Sulphide, Sulphate, Nitrate, Chloride, Bromide, Fluoride, Borate, Oxalate and Phosphate.

Preparation of Inorganic compounds.

1. Tetraammine Copper II sulphate
2. Tris (thiourea) Copper I chloride
3. Potassium trioxalato ferrate II
4. Ferrous ammonium sulphate
5. Microcosmic salt
6. Manganous sulphate
ALLIED – 2

PAPER – 4

INDUSTRIAL CHEMISTRY – IV

Objective:

UNIT-I

1.1 CORROSION AND ITS CONTROL – Introduction - Economic aspects of corrosion - Dry or Chemical Corrosion - Wet or electrochemical corrosion - Mechanism of Electrochemical Corrosion.

1.2 Galvanic Corrosion - Concentration Cell Corrosion - Differential aeration corrosion - Pitting Corrosion - Underground or soil corrosion - Passivity.

UNIT-II

2.1 Factors Influencing Corrosion - Microbiological Corrosion - Atmospheric corrosion – Corrosion Control - Proper designing - Using pure metal - Using metal alloys.

2.2 Chemical conversion – Coating - Phosphating - Chromising - Treatment of metal surfaces hot dipping - Use of inhibitors.

UNIT-III

3.2 Pretreatment of the surface – Metallic Coatings - Hot Dipping -Cementation or Impregnated Coatings - Sprayed Metal Coatings - Cladding – Vapour Deposition.
UNIT-IV

4.1 Paints - ingredients and their functions Required Properties of a Paint Paint Constituents and Their Functions - Manufacture of Paint.

UNIT-V

5.1 Electrical Insulating Materials - Dielectric properties - Requirements of an Electrical Insulating Material - Classification of insulating material - Electrical Rigid Insulations.

5.2 Semiconductors - Introduction - Classification – Degenerate semiconductors – Super conductors
SKILL BASED SUBJECT

PAPER – 2

FOOD CHEMISTRY

Objective:
To obtain knowledge about different foods, their nutritive values and food preservation.

UNIT-I

1.1 Cereals definition - Classification, Processing - Structure of Cereals - Composition and nutritive value. Pulses definition - Classification - Processing - Structure of Pulses - Composition and nutritive value - Toxic Constituents in pulses - medicinal value of cereals and pulses.

UNIT-II

2.1 Vegetables - classification - composition & nutritive values - Fruits- Classification - Composition & nutritive values.
2.2 Fungi and algae as food - enzymatic browning and non enzymatic browning - Nutritive value of some common foods - milk, egg., soyabean

UNIT-III

3.1 Beverages - definition and examples - Classification of beverages
 Fruit beverages - Milk based beverages - malted beverages - examples.
 Alcoholic and non alcoholic beverages - examples.
3.2 Appetizers - definition - classification - examples - Water - functions and deficiency.
UNIT-IV

4.1 Food Preservatives - definition - classification - Food Spoilage - definition - Prevention.
4.2 Methods of preservation - classification - Low and high temperature - preservatives examples -
 Dehydration - osmotic pressure - food irradiation.

UNIT-V

5.1 Food additives-Definition-classification-their functions- chemical substance.
5.2 Packaging of foods-classification-Materials used for packaging.

Reference Books:
1. Food Science - III Edition - B. Sri Lakshmi New Age International Publisher, 2005
 Eastern Ltd., Madras.
5. Handbook of Food and Nutrition - M. Swaminathan - Bangalore Printing and Publishing Co. Ltd.,
 Bangalore.
NON-MAJOR ELECTIVE

PAPER – 2

CHEMISTRY IN EVERY DAY LIFE

Objectives:

➢ To know the basics of chemistry in our life
➢ To know about the food colours, Plastics, drugs etc

UNIT-I

1.1 General Survey of Chemicals used in everyday life

1.2 Cosmetics: Talcum Powder, Tooth pastes, Shampoos, Nail Polish, Perfumes, Soaps, and detergents - General formulations and preparation – possible

Hazards of cosmetics use.

UNIT-II

2.1 Food and Nutrition: Carbohydrates, Proteins, Fats, Minerals and Vitamins, definitions, sources and their physiological importance - balanced diet.

2.2 Adulterants in milk, ghee, oil, coffee powder, tea, asafoetida, chilli powder, pulses and turmeric powder - identification.

UNIT-III

3.1 Colour chemicals used in food - soft drinks and its health hazards.

3.2 Food preservatives-Definition-Examples-Methods of preservation-Low and high temperature-Dehydration-Osmotic pressure-Food irradiation.

UNIT-IV

4.1 Plastics, polythene, PVC, bakelite, polyesters, resins, and their applications.

4.2 Natural Rubber-Synthetic rubbers-Vulcanization - definition and its applications.
UNIT-V

5.1 Chemicals in food production - fertilizers used in natural sources - Fertilizers urea, NPK and Super phosphates need - uses and hazards.

5.2 Pesticides – definition and examples.

Reference Books:

2. Perfumes, Cosmetics and Soaps - W.A. Poucher (Vol 3).

SEMESTER V
PAPER - 5
INORGANIC CHEMISTRY – I

Objectives:

➢ To understand the principle of gravimetric analysis.
➢ To give students a firm grounding in Co-ordination chemistry.
➢ To study about the halogens and related compounds.

UNIT-I

1.2 Co-precipitation - post precipitation - differences - minimisation of error - precipitation from homogeneous solution - calculation in gravimetric methods - use of gravimetric factor.

1.3 Thermoanalytical methods - principle involved in thermogravimetric analysis and differential thermal analysis - characteristics of TGA and DTA - thermograms – factors affecting TGA and DTA curves - discussion of various components of the instrument with block diagrams – Applications of thermogravimetry - Applications of DTA - thermometric titration.

UNIT-II : CO-ORDINATION COMPOUNDS
2.1 Definition of terms used - classification of ligands - chelation and effect of chelation - applications of EDTA - Co-ordination number and stereo chemistry of complexes.

2.2 Nomenclature. Bridged (or) polynuclear complexes - inner metallic complexes.

2.3 Isomerism in complexes - Ionisation Isomerism, hydrate Isomerism, linkage isomerism, ligand Isomerism, Co-ordination Isomerism, polymerization Isomerism, geometrical and optical Isomerism in 4 and 6 co-ordinated complexes.
UNIT-III

3.1 Werner theory - EAN rule - theory of bonding - valence bond theory - hybridisation - geometry and magnetic properties - failure of VBT.

3.2 Crystal field theory - spectrochemical series - splitting of d - orbitals in octahedral, tetrahedral and square planar complexes - crystal field stabilisation energy - calculation of CFSE in octahedral and square planar complexes.

3.3 Low spin and high spin complexes - explanation of magnetic properties, colour and geometry using CFT

UNIT-IV

4.1 Comparison of VBT and CFT.

4.2 Application of Co-ordination compounds in qualitative and quantitative analysis - Detection of potassium ion, separation of Cu and Cd ions, Estimation of Ni using DMG and Al using oxine.

4.3 Pi-acceptor ligands - bonding, hybridisation, structures and properties of carbonyls of Ni, Cr, Fe, Co, Mn, W and V - compounds of P and as acceptor ligands.

UNIT-V

5.1 Halogen-comparative study of F, Cl, Br, I and At - elements - reactivities - comparison of F and O - hydracids - oxides.

5.2 Classification of halides - fluorides of oxygen - exceptional properties of fluorine.

5.3 Oxy acids of halogens - Structure. Interhalogen compounds - pseudohalogens - basic properties of halogens- positive iodine – evidences.
OBJECTIVES:

- To effectively impart knowledge about Carbohydrate chemistry, Stereochemistry, Heterocyclic chemistry and polynuclear hydrocarbons.
- To make the students more inquisitive in learning the mechanistic details in Organic Chemistry through the teaching of the named reactions.
- To learn the synthetic applications of certain organic compounds.

UNIT - I

1.1 Carbohydrates: classification - reactions of glucose and fructose - osazone formation, muta rotation and its mechanism - structural elucidation of glucose and fructose - pyranose and furanose forms.

1.2 Determination of ring size - Haworth projection formula - configuration of glucose and fructose - epimerization - chain lengthening and chain shortening of aldoses - interconversion of aldoses and ketoses.

1.3 Disaccharides and polysaccharides: reactions and Structural elucidation of sucrose. Structural elucidation and properties of cellulose.

UNIT - II

Optical activities in compounds not containing asymmetric carbon atoms: biphenyl, allenes and spiranes.

2.2 Geometrical isomerism: cis - trans, syn - anti and E, Z notations - geometrical isomerism in maleic and fumaric acids and unsymmetrical ketoximes - methods of distinguishing geometrical isomers using melting points, dipole moment, solubility, dehydration, cyclisation, heat of hydrogenation and combustion.

2.3 Conformational analysis: introduction of terms - conformers, configuration, dihedral angle, torsional strain, conformational analysis of ethane and n-butane including energy diagrams - conformers of cyclohexane - axial and equatorial bonds - ring flipping - conformers of mono and dimethylcyclohexane-1, 2 and 1,3 interactions.
UNIT- III

3.1 Carbonyl polarization - reactivity of carbonyl group - acidity of alpha hydrogen; Malonic, acetoacetic and cyano acetic esters - Characteristic reactions of active methylene group - synthetic uses of malonic, acetoacetic and cyano acetic esters.

3.2 Tautomerism: definition - keto-enol tautomerism - identification, acid and basecatalyzed mechanisms, evidences - amido-imidol, nitro-acinitro tautomerisms.

3.3 Mechanism of aldol, Perkin and benzoin condensations and noevenagel, Claisen, Wittig, Cannizzaro, Reformatsky and Michael reactions.

UNIT- IV

4.1 Heterocyclic compounds - Huckel’s rule - Preparation, properties and uses of furan, pyrrole, and thiophene.

4.2 Preparation, properties and uses of pyridine and piperidine. Methods of opening of heterocyclic rings - oxidation, reduction, Hoffmann’s exhaustive methylation, Van Braun’s methods. Comparative study of basicity of pyrrole, pyridine and piperidine with amines.

4.3 Synthesis and reactions of quinoline, isoquinoline and indole with special reference to Skraup, Bischler Napieralski and Fischer Indole syntheses.

UNIT- V

5.1 Polynuclear hydrocarbons - synthesis, properties and uses of naphthalene, anthracene and phenanthrene - structural elucidation of naphthalene - chemistry of naphthaquinones.

5.2 Dyes - Theory of colour and constitution - classification according to the structure and method of application. Preparation and uses of 1) Azo dye - methyl orange 2) Triphenyl methane dye - Malachite green 3) Phthalein dye - phenolphthalein 4) Vat dye - Indigo 5) anthraquinone dye – Alizarin.

5.3 Diazo methane and diazo acetic ester - preparations, structure and synthetic uses.
PHYSICAL CHEMISTRY – I

Objectives

➢ To study about the solutions and colligative properties
➢ To know about Chemical Equilibrium.
➢ To study phase rule.
➢ To promote interest in surface chemistry, catalysis & chemical kinetics.

Unit-I: Colligative properties & Adsorption

1.1 Colligative properties-Lowering of vapour pressure-Osmosis and osmotic pressure-relation between osmotic pressure and vapour pressure of an ideal solution-reverse osmosis.

1.2 Elevation of boiling point and depression of freezing point-derivations and determinations-vant Hoff factor.

1.3 Adsorption: Distinction between chemical and physical adsorption, adsorption isotherms – Freundlich adsorption isotherm- Langmuir adsorption isotherm – Derivation, measurement of surface area.

Unit-II: Phase rule

2.1 Definition of terms: Phase, components and degrees of freedom – Derivation of Gibbs phase rule

2.2 One component system: Water and sulphur system – Reduced phase rule- Two component system: Simple eutectic system: Pb-Ag system, KI-water system freezing mixtures.

2.3 Thermal analysis and cooling curves, Compound formation with congruent melting point Zn – Mg, FeCl₃ – Water system. Compound formation with incongruent melting point Na – K System.
Unit-III: Solutions

3.3 Nernst distribution law – Thermodynamic derivation – limitations- Applications of Nernst distribution law – Solvent extraction and Determination of Hydrolysis constant.

Unit-IV: Chemical Kinetics

4.1 Definitions of terms- Derivations of expressions for Zero, First, Second and Third order rate equations -Study of kinetics by Volumetric, Polarimetric and dilatometric methods. Determination of order of the reactions.

4.2 Complex reactions – consecutive, parallel and reversible reactions (no derivation only examples) Effect of temperature on reaction rate – temperature coefficient – concept of activation energy – Arrhenius equation.

4.3 Theories of reaction rates – Bimolecular collision theory- ARRT-Thermodynamic - aspects of ARRT. Comparison of collision theory and ARRT.

Unit-V: Chemical Equilibrium

5.2 Vant Hoff reaction Isotherm-standard free energy change - Temperature Dependence of equilibrium Constant- Vant Hoff isochore- Le chatelier principle and its applications.

5.3 Enzyme catalysis: Mechanism and Kinetics of enzyme catalysis - Michaelis Menton Equation-effect of temperature on enzyme catalysis.
ELECTIVE
PAPER – 1

A. SPECTROSCOPY – I

Objective:
To impart knowledge about different spectroscopic techniques.

UNIT-I

1.1 Definition of spectrum - Electromagnetic radiation - quantization of different forms of energies in molecules (translational, rotational, vibrational and electronic) - Born Oppenheimer approximation.

1.2 Microwave Spectroscopy - theory of microwave spectroscopy - selection rule - Calculation of moment of inertia and bond length of diatomic molecules.

UNIT-II

UNIT-III

3.1 I. R. Spectroscopy – principle - modes of vibration of diatomic, triatomic linear (CO₂) and nonlinear triatomic molecules (H₂O) - stretching and bending vibrations - selection rules. Expression for vibrational frequency (derivation not needed).

UNIT-IV

UNIT-V

5.1 Raman Spectroscopy : Rayleigh and Raman scattering, stokes and antistokes lines. Differences between Raman and I.R.Spectroscopy. Rotational Raman spectra of Noncentrosymmetric molecules (HCl). Mutual exclusion principle (CO₂ and N₂O)
Reference Books:

1. Elements of Analytical Chemistry - R. Gopalan, P.S. Subramanian, K. Rengarajan - S. Chand
2. and sons (1997).
7. Analytical Chemistry - R.Gopalan - Sultan Chand
9. Instrumental Methods of Analysis - Willard Merit Dean and Settle – Saunders College Publication..
B. BASICS OF COMPUTER PROGRAMMING IN C AND ITS APPLICATIONS IN CHEMISTRY

Objective:

- To introduce the basics of computers.
- To learn C language and its applications in solving problems in Chemistry.

Unit-I

Unit-II

Computer languages – machine language, assembly language, assembler, compiler, interpreter and programming languages - C language – introduction, C compiler, operating systems and preprocessor directives - variables, constants, operators, input and output functions.

Unit-III

Control structures – conditional, looping, goto, break, switch and continue statements, functions, arrays and pointers.

Unit-IV

Applications in Chemistry – calculation of the radius of the first Bohr orbit for an electron, calculation of half-life time for an integral order reaction, calculation of molarity, molality and normality of a solution, calculation of pressure of ideal or Vanderwaal’s gas, Calculation of electronegativity of an element using Pauling’s relation.

Unit-V

Applications in Chemistry - Calculation of empirical formulae of hydro carbon, calculation of reduced mass of a few diatomic molecules, determination of the wave numbers of spectral lines of hydrogen
atom, calculation of work of expansion in adiabatic process, calculation of pH, solubility product and bond energy using Born - Lande equation, calculation of standard deviation and correlation coefficient.

Reference Books:

C. ORGANIC SYNTHESIS

Objective:

- To introduce the basics of retro synthesis.
- To learn about ring synthesis

UNIT-I: DISCONNECTION APPROACH

1.1 An introduction to synthons and synthetic equivalent.
1.2 Disconnection approach, functional group interconversion.
1.3 The importance of the order of events in organic synthesis, one group C-X and two group C-X disconnections. Chemoslectivity, reversal of polarity.

UNIT-II: PROTECTING GROUPS

2.1 Principle of protection of alcohol group and amine group.
2.2 Principle of protection of carbonyl group and carboxyl group.
2.3 Activation of functional group.

UNIT-III: ONE GROUP C-C DISCONNECTIONS

3.1 Alcohols and carbonyl compounds.
3.2 Regioselectivity and Alkene synthesis.
3.3 Use of acetylenes and aliphatic nitrocompounds in organic synthesis.

UNIT-IV: TWO GROUP C-C DISCONNECTIONS

4.1 Diels-Alder reaction, 1,3- difunctionalised compounds.
4.2 α,β unsaturated carbonyl compounds, Control in carbonyl condensations.
4.3 1,5- difunctionalised compounds, Michael addition and Robinson annulation.
UNIT-V: RING SYNTHESIS

Saturated heterocycles.

Synthesis of 3-, 4-, 5- and 6- membered rings, aromatic heterocycles in organic synthesis.

Application of the above in the synthesis of camphor, longifoline, cortisone & reserpine.

Reference Books:

SKILL BASED SUBJECT

PAPER – 3

DATA ANALYSIS AND SEPARATION TECHNIQUES

Objectives:

- To learn the data analysis, significant figure and error
- To learn Chromatographic separation techniques

UNIT-I

UNIT-II

UNIT-III

3.1 Chromatography-principles and techniques of column, paper and thin layer chromatography-$$R_f$$ value- applications.
3.2 Ion exchange chromatography-principle-experimental techniques and applications.

UNIT-IV

5.1 HPLC and GC- Principle, instrumentation and applications
5.2 GC-MS and LC-MS-Principle, instrumentation and applications
UNIT-V

5.1 Introduction to computer and its application in chemistry – characteristics of a computer – types of computer – block diagram of a digital computer – the art of programming – general features of a programming language – algorithm and flow charts.

Reference Books:

6. Analytical Chemistry - R.Gopalan - Sultan Chand
8. Instrumental Methods of Analysis - Willard et al - c x B S.
10. Instrumental Methods of Chemical Analysis – B.K. Sharma - Goel publication
Objectives:

- To impart knowledge about radioactivity and nuclear chemistry.
- To understand the metallic bond and bio-inorganic chemistry.
- To learn about d and f block elements.
- To provide knowledge about industrial chemistry.

UNIT-I: NUCLEAR CHEMISTRY

1.1 Introduction - composition of nucleus - nuclear forces operating between the nucleons - N/P ratio, curves, stability belts - the whole number rule and packing fraction - isotopes, isobars, isotones and isomers.

1.2 Nuclear binding energy - Mass defect - simple calculations involving mass defect and binding energy per nucleon - magic numbers - liquid drop model - shell model.

UNIT-II

2.1 Natural radioactivity - Detection and measurement of radioactivity - radioactive series including neptunium series - group displacement law - Rate of disintegration and half-life period - Average life period.

2.2 Artificial radioactivity - induced radioactivity - uses of radioisotopes - hazards of radiations - nuclear fission - nuclear energy - nuclear reactors - nuclear fusion - thermo nuclear reactions - energy source of the sun and stars.
UNIT-III

3.1 Metallic bond - theories - electron pool theory - valence bond theory - MO theory - semiconductors - n and p type semiconductors.

3.2 Bioinorganic chemistry - Biological aspects of Fe, Zn, Mg, Co and Mo - Role of Na, K, Ca, and P - Biological functions and toxicity of some elements.

UNIT-IV

4.1 Comparative study of Ti, V, Cr, Mn and Fe group metals - occurrence, oxidation states, magnetic properties and colour - preparation and uses of ammonium molybdate, V₂O₅ and UF₆.

4.2 Comparative study of lanthanides and actinides, occurrence, elements, oxidation states, magnetic properties, colour and spectra - lanthanide contraction - causes, consequences and uses - comparison between lanthanides and actinides.

UNIT-V

5.1 Industrial chemistry - Fuel gases - caloric value - composition and sources - formation of water gas, semi water gas, carburetted water gas, producer gas, oil gas, natural gas, LPG and bio gas (manufacture not required)

5.2 Composition and setting of cement - manufacture of cement - examples for pigments - constituents of paints and their functions - type of glasses - manufacture of glass.
CORE PRACTICAL
PAPER – 3

GRAVIMETRIC ESTIMATION

1. Estimation of sulphate as barium sulphate.
2. Estimation of barium as barium sulphate.
3. Estimation of barium as barium chromate.
4. Estimation of lead as lead chromate.
5. Estimation of calcium as calcium oxalate monohydrate.
PAPER – 9

ORGANIC CHEMISTRY – II

Objectives:

➢ To understand the basic concepts organic photochemistry
➢ To kindle interest in students in learning bio-organic chemistry through the introduction of topics such as Proteins, Nucleic acids, Terpenes, Alkaloids etc.
➢ To generate keen interest and thinking in understanding the mechanisms of Molecular Rearrangements

UNIT-I

1.2 Mechanism of reduction with sodium borohydride, lithium aluminium hydride, Wolf Kishner reduction, MPV reduction and Rosenmund reduction.

UNIT-II

2.1 Amino acids : Classification of amino acids - preparations and properties of alpha amino acids - with special reference to Gabriel phthalimide synthesis, Strecker synthesis, Erlenmeyer synthesis- zwitter ion, isoelectric point. Poly peptides and proteins:. Classification of proteins based on physical and chemical properties and physiological functions -peptide synthesis - Bergmann synthesis.
2.2 Primary structure of proteins - end group analysis - Edman method, Sanger’s method secondary structure of protein - helical and sheet structures - denaturation of proteins
UNIT- III

3.1 Nucleic acids: Nucleoside, nucleotide, degradation of nucleotide chain - structure of nucleic acids - RNA and DNA - elementary idea about protein synthesis. Synthesis of pyrimidine and purine bases - guanine, adenine, uracil, cytosine and thymine.

3.2 Terpenes - isoprene rule – structural elucidation of menthol and alpha terpeniol

UNIT- IV

4.1 Vitamins – Classification-Structural elucidation of pyridoxine. Antibiotics - Structural elucidation of chloroamphenicol.

4.2 Alkaloids- General methods of Isolation and structural elucidation of piperine and nicotine.

UNIT- V

5.1 Molecular rearrangements: Classification – anionotropic and cationotropic, inter molecular and intra molecular rearrangements- Mechanisms, evidences, migratory aptitude, inter or intra molecular of the following rearrangements : Pinacol-pinacolone, Benzilic acid, Cope, oxy Cope, rearrangements.

5.2 Mechanisms, evidences, migratory aptitude, inter or intra molecular of the following rearrangements Beckmann, Hoffmann, Curtius, Baeyer-Villiger, Claisen (sigmatropic) and Fries (Two mechanisms) rearrangement.
CORE PRACTICAL

PAPER – 4

ORGANIC QUALITATIVE ANALYSIS AND PREPARATIONS

Analysis of organic compounds containing one functional group and characterization with a derivative.

Reactions of the following functional groups:

Aldyhyde, ketone, carboxylic acid (mono and di), ester, carbohydrate (reducing and non reducing), phenol, aromatic primary amine, amide, nitro compound, diamide and anilide.

Organic Preparations:

Acylation

1. Acetylation of salicylic acid or aniline.
2. Benzoylation of aniline or phenol.

Nitration

3. Preparation of m-dinitrobenzene
4. Preparation of p- nitroacetanilide

Halogenation

5. Preparation of p-bromoacetanilide
6. Preparation of 2,4,6-tribromophenol

Diazotisation / coupling

7. Preparation of methyl orange

Oxidation

8. Preparation of benzoic acid from toluene or benzaldehyde.
Hydrolysis:

9. Hydrolysis of ethyl benzoate (or) methyl salicylate (or) Benzamide.

Reference Book for Practicals:

1. Vogel’s text book of chemical analysis
3. Practical Chemistry - 3 Volumes - S. Sundaram and others.
PAPER – 10

PHYSICAL CHEMISTRY – II

Objectives:

➢ To learn the basic concept of photo chemistry.
➢ To learn about Electro chemistry and its applications.

UNIT-I: Photochemistry

1.1 Interaction of radiation with matter, differences between thermal and photochemical processes.
 Laws of photochemistry: Grothus-Draper law, Stark-Einstein law, Jablonski diagram depicting various processes occurring in the excited state (internal conversion, intersystem crossing)
 Qualitative description of fluorescence, phosphorescence, chemiluminescence quantum yield-photosensitized reactions
1.2 Kinetics of photochemical combinations- H₂-Cl₂ and H₂-Br₂ reactions.

UNIT-II : Electrochemistry- I

2.1 Conduction in metals and in electrolyte solutions, specific conductance and equivalent conductance, measurement of equivalent conductance. Variation of equivalent and specific conductance with dilution-Ostwalds dilution law.
2.2 Debye Huckel theory of strong electrolytes-Onsagar equation (no derivation) Significance and limitations. Kohlrausch law and its applications.

UNIT-III : Electrochemistry- II

3.1 Migration of ions-ionic mobility- Transport number and its determination-Hittorff method and moving boundary method-abnormal transport number
3.2 Applications of conductometric measurements-determination of degree of dissociation of weak electrolytes, ionic product of water, solubility product of a sparingly soluble salt, Conductometric titrations. pH concept-buffer solutions, buffer activity-Henderson equation-applications of buffer solutions.
UNIT - IV Electrochemistry-III

4.1 Solubility product and its relationship with solubility - Hydrolysis of salts- expressions for hydrolysis constant, degree of hydrolysis and pH of aqueous salt solutions.

4.2 Electromotive force- Electrolytic and Galvanic cells-Daniel cell, Standard Weston cadmium cell reversible and irreversible cells, conventional representation of electrochemical cells. EMF of a cell and its measurement. Computation of cell EMF.- Nernst equation

4.3 Types of reversible electrodes: gas, metal-metal ion, metal-insoluble salt- anion, amalgam and redox electrodes. single electrode potential, standard hydrogen electrode-reference electrodes-standard electrode potential, sign conventions. Derivation of thermodynamic quantities of cell reactions (ΔG ,ΔH and ΔS,)

UNIT - V Electrochemistry- IV

5.1 Cells-types - Concentration cells with and without transference, liquid junction potential.

5.2 Applications of emf measurements-valency of doubtful ions, solubility product and activity coefficient, potentiometric titaration- Determinition of pH using hydrogen, quinhydrone and glass electrodes.

5.3 Decomposition potential and overvoltage (basic concepts)- fuel cells (H₂-O₂ cell)

Lead storage battery.

REFERENCE BOOKS :

INORGANIC CHEMISTRY :

5. Concise Inorganic Chemistry - J.D. Lee - III edition - Von Nostrand

ORGANIC CHEMISTRY :

1. Organic Chemistry - R. T. Morrison and Boyd - Pearson Education
2. Organic Chemistry - I. L Finar - Volume I and II - Pearson Education
5. Stereochemistry, Conformations and Mechanisms - Kalsi - New Age
9. Chemistry of Natural Products - Gurdeep Chatwal- Himalaya Publishing House
14. Reaction, Mechanism and Structure- Jerry March- John Wiley and Sons
15. Organic Chemistry - Bruice - Pearson Education
PHYSICAL CHEMISTRY:

4. Physical Chemistry - Kundu and Jain - S. Chand & Co.
5. Physical Chemistry - K.L Kapoor - Macmillan - 4 volumes
7. Text book of Physical Chemistry - S.Glasstone- Macmillan (India) Ltd..
11. Numerical Problems on Physical Chemistry Gashal, Books and Allied (P) Ltd.,

REFERENCE BOOKS FOR INDUSTRIAL CHEMISTRY:

1. ENGINEERING CHEMISTRY
 A. RAVIKRISHNAN,
 SRI KRISHNA PUBLICATIONS
 SAVARAPOONDI (POST), POLUR (T.K), T.V. MALAI (DT) 606 902
2. ENGINEERING CHEMISTRY
 V.SRINIVASAN,
 SD. UMA MAGESWARI, M.
 MEENA
 SCITECH PUBLICATIONS(INDIA) P LTD.,
3. CHEMISTRY IN ENGINEERING AND TECHNOLOGY
 Dr. P. Kamaraj
 Dr. R. Jeyalakshmi Dr. V. Narayanan
 Sudhandhira Publications
 No.17, Yadavaal Street, Kottur Chennai
 – 600 085

4. ENGINEERING CHEMISTRY
 R. Gopalan
 D. Venkikkappayya S.
 Nagarajan
 Vikas Publishing House Pvt Ltd
 576 Masjid Road, Jangpura, New Delhi 110 014

5. APPLIED CHEMISTRY (SECOND EDITION)
 N. Krishnamurthy
 P. Vallinayagam
 K. Jeysubramanian

6. ENGINEERING CHEMISTRY DANIEL
 Yesudian
 Hi-Tech Publications,
 22, North Rammalilnga Street, Mayiladuthurai –609 001.

7. CHEMISTRY IN ENGINEERING AND TECHNOLOGY (VOLUME 2)
 J.C. Kuriacose J.
 Rajaram

8. INDUSTRIAL CHEMISTRY (INCLUDING CHEMICAL ENGINEERING)
 B.K. Sharma
 Goel Publishing House, Meerut.

9. ENVIRONMENTAL CHEMISTRY B.K.
 Sharma
GOEL PUBLISHING HOUSE, MEERUT.

10. APPLIED CHEMISTRY (FOR B.E/B. TECH) SRI DEVI BHASKARAN
CHARULATHA PUBLICATIONS
24, THAMBAIAH REDDY STREET, WEST MAMBALAM, CHENNAI - 33.

11. WATER POLLUTION AND MANAGEMENT, C.K. VARSHNEY
WILEY EASTERN LIMITED,
NO.6, FIRST MAIN ROAD, GANDHI NAGAR , CHENNAI - 20.

12. A TEXT BOOK ON ENGINEERING CHEMISTRY BALARAM PANI
GALGOTIA PUBLICATIONS PVT LTD.
5, ANSARI ROAD, DARYAAGANJ, NEW DELHI – 110 002.

13. ENGINEERING CHEMISTRY JAIN
AND JAIN
DHANPAT RAI PUBLISHING COMPANY
487/23. ANSARI ROAD, DARYA GANJ NEW DELHI 110 002.

14. POLLUTION CONTROL IN PROCESS INDUSTRIES
S.P. MAHAJAN
TATA MCGRAW-HILL PUBLISHING COMPANY LIMITED, NEW DELHI.

15. ENGINEERING CHEMISTRY (A TEXT BOOK) DR. M.R.
BALASUBRAMANIAN
DR. S. KRISHNAMOORTHY DR. V.
MURUGESAN ALLIED PUBLISHERS LTD.,
751, MOUNT ROAD, CHENNAI - 29.
16. **Fuels and Petroleum Processing**

(INCLUDING PETROCHEMICALS AND INDUSTRIAL ORGANIC SYNTHESIS)
B.K. Sharma
Goel Publishing House, Meerut.

17. **Basic Applied Chemistry**

(INCLUDING PRACTICALS)
P.C. Jain, Monika Jain Dhanpat Rai and Sons
1682, Nai Sarak, New Delhi - 110 006.

18. **Air Pollution M.N.**
Rao
H.V.N Rao

19. **Fundamental Concepts of Applied Chemistry Jayasree Ghosh**
S.Chand & Company, Ram Nagar, New Delhi - 110055.

20. **Text Book of Organic Chemistry**

2nd Revised Edition
K.S.Tewari N.K/Vishnoi
S.N.Mehrotra
Vikas Publishing House Pvt Ltd.

21. **Text Book of Pharmaceutical Chemistry Jayashree Ghosh**

2nd Edition
S.Chand & Company
Ram Nagar, New Delhi - 110055
CORE PRACTICAL
PAPER – 5
PHYSICAL CHEMISTRY EXPERIMENTS

1. Kinetics
Determination of the order of the following reactions.
 a). Acid catalysed hydrolysis of an ester (methyl or ethyl acetate)
 b). Saponification of an ester (methyl or ethyl acetate)
 c). Iodination of acetone.
2. a) Molecular weight of a solute - Rast’s method using naphthalene, or diphenyl as solvents.
 b) Determination of K_f of solvent
3 Heterogeneous equilibria :
 a). *Phenol-water system – CST
 b) Effect of impurity – 2% NaCl or succinic acid solutions on phenol water system - determination of the concentration of the given solution
4. Determination of the transition temperature of the given salt hydrate. Na$_2$S$_2$O$_3$, 5 H$_2$O, CH$_3$COONa, 3H$_2$O, SrCl$_2$, 6H$_2$O, MnCl$_2$, 4H$_2$O
5. Electrochemistry
Conductivity
 a. Determination of cell constant and equivalent conductivities of solutions of two different concentrations.
 b. Conductometric titration of a strong acid against a strong base.
6. Potentiometric titration of a strong acid against a strong base.
 *need not be given in examination.

Students must write short procedure / formula with explanation in ten minutes for evaluation during the university practical examination.
CORE PRACTICAL

PAPER – VI

INDUSTRIAL CHEMISTRY PRACTICAL – III

1. Percentage of Sulphated ash in Aspirin tablet
2. Percentage of purity of Sodium bicarbonate
3. Percentage of purity of oxalic acid
4. Loss of moisture from any drug
5. Assay of Hydrogen peroxide
6. Assay of Sodium chloride or Potassium chloride
7. Assay of Zinc oxide
8. Determination of saponification value of oil.

REFERENCE BOOK FOR PRACTICALS:

1. Vogel’s text book of chemical analysis
3. Practical chemistry - S. Sundaram - 3 Volumes - S. Viswanathan
ELECTIVE
PAPER – 2

A. PHARMACEUTICAL CHEMISTRY

Objective :

➢ To effectively impart knowledge about various diseases and their treatment.
➢ To learn about the importance of Indian medicinal plants.
➢ To known about the different types of drugs.

(Preparation, Synthesis and Structural determination are not required for the Compounds mentioned.

UNIT: I

1.1 Definition of the following terms: drug, pharmacophore, pharmacology, pharmacopoeia, bacteria, virus, chemotherapy and vaccine.
1.2 Causes, symptoms and drug for jaundice, cholera, malaria and filaria. First aid for accidents - antidotes for poisoning.

UNIT - II

2.1 Causes, detection and control of anaemia and diabeties. Diagnostic test for sugar, salt and cholesterol in serum and urine.
2.2 Indian medicinal plants and uses-Tulasi, Neem, Kizhanelli, Mango, Semparruthi, Adadodai and Thoothvelai.

UNIT- III

3.1 Antibacterials: Sulpha drugs-examples and actions-prontosil sulphathiazole, sulphafurazole
Antibiotics-definition and action of penicillin, streptomycin, chloramphenicol - SAR of chloramphenicol only.
3.2 Antiseptics and disinfectants - definition and distinction-phenolic compounds, chloro compounds, and cationic surfactant.
UNIT – IV

4.1 Analgesics, Antipyretics and anti-inflammatory agents: Definition and actions - narcotic and non-narcotic - morphine and its derivatives, pethidine and methodone - salicylic derivative, paracetamol, ibuprofen - disadvantages and uses.
4.2 Causes, and treatment of cancer - AIDS - AZT, DDC.

UNIT - V

5.1 Anaesthetics - definition - local and general - volatile nitrous oxide, ether, Chloroform, cyclopropane - trichloroethylene - uses and disadvantages.
5.2 Drugs affecting CNS - Definition, distinction and examples for tranquilizers, sedatives, hypnotics, psychedelic drugs - LSD Hashish - their effects.

Reference Books:

6. Introduction to Biological Chemistry - J. Awapara Prentice Hall
Objective:
To know about the types of polymers, polymerization techniques and commercial polymers

UNIT-I
Polymers: Basic Concept, classification of polymers on the basis of structures and applications. Distinction among plastics, elastomers, and fibers, Homo and hetero polymers, copolymers, properties of polymers, glass transition temp. (Tg) - definition, factors affecting Tg, Relationship between Tg and molecular weight.

UNIT-II
Molecular Weight of polymers, Number average, weight average, sedimentation and viscosity - average molecular weights, Molecular weights and degree of polymerization. Reactions - Hydrolysis, Hydrogenation, addition, substitution, cross linking - vulcanization and cyclisation.

UNIT-III
Polymerization techniques: Bulk, solution, suspension & emulsion polymerization - melt polycondensation. Polymer processing - Calendaring, die casting, rotational casting.

UNIT-IV
Chemistry of commercial polymers - General methods of preparation, properties and uses of the following - Teflon, polyethylene, polystyrene, polyesters, poly amides, polycarbonates and PVC.

UNIT-V
Advances in polymers; Bio-Polymers, biomaterials, polymers in medical field, High temperature and fire resistant polymers – Silicons.
Reference Books:

5. Polymer Chemistry - An introduction - M.P. Stevens, oxford..
C. GREEN CHEMISTRY

Objective:

- To know the basics of Green Chemistry and its developments.
- To know the basic ideas of Nano chemistry.

UNIT- I Green Chemistry – Introduction

1.1 Need for green chemistry – principles of green chemistry – atom economy – definition with example (ibuprofen synthesis) – green oxidant – hydrogen peroxide.

1.2 Microwave assisted organic synthesis – apparatus required – examples of MAOS (synthesis of fused anthroquinones, acetalization of a byproduct of sugar industry, 1,3-dipolar cycloaddition of nitrones to fluorinated dipolarophiles, Leukart reductive amination of ketones) – advantages and disadvantages of MAOS.

UNIT-II Green Reactions (9 Hours)

2.1 Acetylation of primary amine, base catalyzed aldol condensation (synthesis of dibenzalpropanone), halogen addition to C=C bond (bromination of trans-stilbene), [4+2] cycloaddition reaction (Diels-Alder reaction between furan and maleic acid).

2.2 Rearrangement reaction (benzyl-benzilic acid rearrangement), coenzyme catalyzed benzoin condensation (thiamine hydrochloride catalyzed synthesis of benzoin, Pechmann condensation for coumarin synthesis (clay catalyzed solid state synthesis of 7-hydroxy-4-methylcoumarin).

2.3 Electrophilic aromatic substitution reactions (nitration of phenol, bromination of acetonilide) – green oxidation reactions (synthesis of adipic acid, preparation of manganese (III) acetylacetonate) – zeolite catalyzed Friedel-Crafts acylation.

UNIT-III Green Solvents

3.1 Ionic liquids: simple preparation – types – properties and application – ionic liquids in organic reactions (Heck reaction, Suzuki reactions, epoxidation), industrial (battery) and
analytical chemistry (matrices for MALDI-TOF MS, gas chromatography stationary phases – advantages and disadvantages.

3.2 Super critical CO₂ – preparation, properties and applications (decaffeination, dry cleaning) – environmental impact.

3.3 Diels-Alder reaction in water – catalysis in water (aerobic oxidation of alcohols catalyzed by Pd(II) / bathophenanthroline).

UNIT-IV Basics of Nanochemistry

4.3 Techniques to synthesize nanoparticles – top down and bottom up approaches – common growth methods.

UNIT-V Nano Materials and their Characterization

5.1 Preparation, properties and applications of carbon nanotubes, nanorods, nano fibre and nanoclay – toxic effects of nanomaterials.

5.2 Electron microscopes – scanning electron microscopes (SEM) – transmission electron microscopes (TEM) – scanning probe microscopy – atomic force microscopy (AFM) – scanning tunneling electron microscope (STEM) – basic principles only.

Books for Study:

Books for Reference:

ELECTIVE

PAPER – 3

A. SPECTROSCOPY – II

Objective:
To impart knowledge about different spectroscopic techniques.

UNIT-I

1.1 NMR Spectroscopy - principle of nuclear magnetic resonance – basic instrumentation - number of signals - chemical shift - shielding and deshielding. Spin spin coupling and coupling constants. TMS as NMR standard.

UNIT: II

2.1 Interpretation of NMR spectra of simple organic compounds such as Acetone, Anisole, Benzaldehyde, Ethyl acetate, Ethylamine, Ethyl Bromide, Toluene and Isopropyl phenyl ketone.

UNIT-III

UNIT-V

4.1 Interpretation of mass spectra of simple organic compounds such as Acetone, Anisole, Benzaldehyde, Ethyl acetate, Ethylamine, Ethyl Bromide, Toluene and Isopropyl phenyl ketone. Mc-Lefferty Rearrangement.

UNIT-V

5.1 E.S.R.Spectroscopy - condition - theory of esr spectra - hyperfine splitting - esr spectra of simple radicals - CH₃,CD₃,Naphthalene radical ions only.
Reference Books:

1. Basic concept of Analytical Chemistry- S. M. Khopkar

2. Analytical Chemistry - R. Gopalan

5. Organic Spectroscopy - W. Kemp

7. Fundamentals of Molecular Spectroscopy - C. N. Banwell

9. Introduction to Molecular Spectroscopy – Barrow

10. Spectroscopy of Organic Compounds – P.S.Kalsi

11. Instrumental Methods of Chemical Analysis – B.K.Sharma

Objective:

- To impart knowledge on biological, dairy, leather, soil and dye chemistry.

Unit-I Biological Chemistry:

Unit-II Dairy Chemistry:

Unit-III Leather Chemistry:

Introduction, chief process used in leather manufacture, structure of hide and skin, leather processing-process before tannage- tanning process- vegetable tanning and chrome tanning. Tannery effluent and by product problems and treatment

Unit-IV Soil Chemistry:

Introduction-soil classification, properties of soil, soil water, soil air, soil temperature, soil minerals, soil colloids, soil reaction and buffering, soil pH, soil acidity, soil salinity and alkalinity, soil fertility and soil formation.

Unit-V
Water Chemistry- Hardness, degree of hardness, temporary and permanent hardness, scale formation, removal of hardness - Reverse osmosis and ion exchange methods – principle and functions.
Reference Books:

C. NANO CHEMISTRY

Objective:

- To introduce the basics of nanotechnology.
- To learn the instrumental techniques used in characterization of nano materials.

UNIT-I Basics of Nanochemistry:

UNIT-II Nano Particles:

Introduction – types of nanoparticles – preparation, properties and uses of gold, silicon, silver, zinc oxide, iron oxide, alumina and titania nanoparticles.

UNIT-III Synthetic Techniques:

Techniques to synthesize nanoparticles – top down and bottom up approaches – common growth methods – characterization of nanoparticles – applications and toxic effects of nanomaterials.

UNIT-IV Nano Materials:

Preparation, properties and applications of carbon nanotubes, nanorods, nano fibre and nanoclay.

UNIT-V Instrumental Techniques:

Electron microscopes – scanning electron microscopes (SEM) – transmission electron microscopes (TEM) – scanning probe microscopy – atomic force microscopy (AFM) – scanning tunneling electron microscope (STEM) – basic principles only.

Books for Study:

Books for Reference:

SKILL BASED SUBJECT

PAPER – 4

AGRICULTURE AND LEATHER CHEMISTRY

Objective:

To learn about Agriculture and Leather Chemistry

UNIT-I Soil Chemistry:

UNIT-II Soil Fertility and Productivity:

UNIT-III Pesticides:

Classification of Insecticides - Stomach poisons - Contact poisons and Fumigants - Insecticides - Organic Insecticides - DDT - Gammexane - Malathion - Parathion - Fungicides - Herbicides - Rodenticides - Pesticides in India - Adverse environmental effects of pesticides.

UNIT-IV Leather Chemistry:

UNIT-V

Tannery effluents - Pollution and its control - Water pollution and Air pollution - waste management - primary, secondary - tertiary treatment - pollution prevention.

Reference Books:

3. Fundamental concept of Applied Chemistry by Jayashree Ghosh, S. Chand & Company Ltd.,
11. Nature and properties of soils - Harry, O. Buckman
