SYLLABUS FOR CHEMICAL ENGINEERING

MATHEMATICS (50 Marks)

Unit-I: Matrices

Partial Fractions: Resolving a given rational function into partial fractions.

Unit–II: Trigonometry
Properties of Trigonometric functions – Ratios of Compound angles, multiple angles, sub multiple angles – Transformations of Products into sum or difference and vice versa – Simple trigonometric equations – Properties of triangles – Inverse Trigonometric functions.

Complex Numbers: Properties of Modulus, amplitude and conjugate of complex numbers, arithmetic operations on complex number—Modulus-Amplitude form (Polar form)-Euler form (exponential form)-Properties- De Movire’s Theorem and its applications.

Unit–III: Analytical Geometry
Straight Lines – different forms of Straight Lines, distance of a point from a line, acute angle between two lines, intersection of two non- parallel lines and distance between two parallel lines. Circles-Equation of circle given center and radius, given ends of diameter-General equation-finding center and radius. Standard forms of equations of Parabola, Ellipse and Hyperbola – simple properties.

Unit–IV: Differentiation and its Applications
Functions and limits – Standard limits – Differentiation from the First Principles – Differentiation of sum, product, quotient of functions, function of function, trigonometric, inverse trigonometric, exponential, logarithmic, Hyperbolic functions, implicit, explicit and parametric functions – Derivative of a function with respect to another function-Second order derivatives – Geometrical applications of the derivative (angle between curves, tangent and normal) – Increasing and decreasing functions – Maxima and Minima (single variable functions) using second order derivative only – Derivative as rate measure -Errors and approximations - Partial Differentiation – Partial derivatives up to second order – Euler’s theorem.

Unit–V: Integration and its Applications
Indefinite Integral – Standard forms – Integration by decomposition of the integrand of trigonometric, algebraic, exponential, logarithmic and Hyperbolic functions – Integration by substitution – Integration of reducible and irreducible quadratic factors – Integration by parts – Definite Integrals and properties, Definite Integral as the limit of a sum – Application of Integration to find areas under plane curves and volumes of Solids of revolution – Mean and RMS value.

Unit–VI: Differential Equations
Definition of a differential equation-order and degree of a differential equation- formation of differential equations-solution of differential equation of the type first order, first degree, variable-separable, homogeneous equations, exact, linear differential equation of the form $dy/dx + Py = Q$, Bernoulli’s equation, nth order linear differential equation with constant coefficients both homogeneous and non homogeneous and finding the Particular Integrals for
the functions e^{ax}, x^n, $\sin ax$, $\cos ax$.

Unit–VII: Laplace Transforms and Fourier series
Laplace Transforms and Inverse Laplace Transforms of Elementary functions. Shifting Theorems of LTs and ILTs.
Define Fourier series, Euler’s Formulae Over the interval $(C, C+2\pi)$. Even and odd functions and their Fourier series

Unit–VIII: Probability and Statistics
Define Probability, addition Theorem, conditional Probability, Mean, Median, Mode, Mean deviation and standard deviation.

PHYSICS (25 Marks)

Unit-I: Units and dimensions: Physical quantity-fundamental and derived physical quantities-units-fundamental and derived units-SI units-multiples and sub-multiples in SI units-advantages of SI units-dimensions and dimensional formulae-dimensionless quantities-applications and limitations of dimensional analysis-problems.

Unit-II: Elements of vectors:
Scalar and vector quantities-examples-types of vectors-addition and subtraction of vectors-triangle law-parallelagram law and its cases-polygon law-resolution of a vector-unit vectors (i, j, k)-dot product and cross product of two vectors-characteristics of dot and cross products-examples-problems.

Unit-III: Kinematics and Friction
Equations of motion-acceleration due to gravity-equations of motion under gravity-expressions for maximum height, time of ascent, time of descent, time of flight, velocity on reaching the point of projection in vertical motion--motion of a body projected from the top of a tower-projectile motion-examples-horizontal and oblique projections-expressions for maximum height, time of ascent, time of flight, horizontal range, problems. Friction-causes and types of friction-normal reaction-laws of friction-coefficients of friction-angle of friction-methods of reducing friction-advantages and disadvantages of friction-motion of a body over a rough horizontal surface, a smooth inclined plane and a rough inclined plane-problems.

Unit-IV: Work, Power and Energy
Work, power and energy definitions and units-potential and kinetic energies-examples and expressions-work-energy theorem-law of conservation of energy-problems.

Unit-V: Simple harmonic motion and Sound

Unit-VI: Heat and Thermodynamics
Expansion of gases-Boyle’s law-Absolute scale of temperature-Charles laws-Ideal gas equation-Universal gas constant and its value-SI Units-problems-external work done by a gas-isothermal process-adiabatic process-first law of thermodynamics and its applications to
isothermal process and adiabatic process—two specific heats of a gas—relation between Cp and Cv—problems—second law of thermodynamics and its applications.

Unit-VII: Modern physics

Photoelectric effect—explanation and its laws—applications of photoelectric effect (photocell)—Einstein’s photoelectric equation—critical angle and total internal reflection—optical fibers—principle, working, types and applications—concept of super conductivity—its properties and applications.

CHEMISTRY (25 Marks)

Unit – I: Fundamentals of chemistry:

Atomic structure: Introduction—Fundamental particles—Bohr’s theory—Quantum numbers—Aufbau principle—Hund’s rule—Pauli’s exclusion principle—Electronic configurations of elements up to atomic number 20, shapes of s, p, d orbital’s.

Chemical Bonding: Introduction—types of chemical bonds—Ionic bond taking example of NaCl and MgO—characteristics of ionic compounds and covalent bond taking example H₂, O₂, N₂, HCl, characteristics of covalent compounds—Coordinate covalent bond—Metallic bond.

Oxidation-Reductions: concepts of Oxidation-Reduction, Oxidation number and its calculations, differences between oxidation number and Valency

Unit-II: Solutions: Introduction—solution classification of solutions, solute, solvent, concentration, mole concept,–Molarity,–Normality, equivalent weight using acids, bases and salts, numerical problems on Molarity and Normality.

Unit – IV: Principles of Metallurgy: Characteristics of metals and distinction between metals and non-metals. Definitions of metallurgy, ore, gangue, flux, slag—concentration of ore—hand picking, levigation, froth floatation—extraction of crude metal—roasting—calcination, smelting—alloys—composition and uses of brass, German silver and nichrome.

Unit-V: Electrochemistry: Conductors, insulators, electrolytes—Arrhenius theory of electrolytic dissociation—electrolysis—Faraday’s laws of electrolysis—numerical problems—Galvanic cell—standard electrode potential—electro chemical series—emf and numerical problems on emf of a cell.

Unit –VI: Corrosion: Introduction—factors influencing corrosion—electrochemical theory of corrosion—composition cell, stress cell and concentration cells—rusting of iron and its mechanism—prevention of corrosion by (a) coating methods, (b) cathodic protection (sacrificial and impressive voltage methods).

Unit-VIII: Polymers: Introduction—polymerization—types of polymerization—addition, condensation polymerization with examples—plastics—types of plastics—advantages of plastics over traditional materials—Disadvantages of using plastics—thermo plastics and thermo setting plastics—differences between thermo plastics and thermo stetting plastics—preparation and

Unit-IX: Fuels: Definition and classification of fuels based on physical state and occurrence – characteristics of good fuel - composition and uses of gaseous fuels. (a) Water gas, (b) producer gas, (c) natural gas, (d) coal gas, (e) bio gas, (f) acetylene.

CHEMICAL ENGINEERING (100 Marks)

1. **Material technology:** Mechanical properties of metals and Testing of materials – thermal equilibrium diagram - Production of Iron-plain carbon steels, alloy steels – Non-ferrous metals & their alloys - Aluminium, copper, nickel, lead, tin, zinc - Miscellaneous materials – Glass, carbon, graphite, rubber, elastomers, fibreglass and FRP etc. – Corrosion- causes, types, methods of prevention.

2. **Mass and Energy Balance:** Determination of molarity, molality & normality, analysis of solids, liquids and gases on dry and wet basis - Daltons law, ideal gas equation of state, vapor pressure boiling point and freezing point, elevation of boiling point and depression of freezing point-uses, Bypass and Recycle streams – uses, limiting component, excess reactant, percentage conversion & yield and degree of completion - Material balances with and without chemical reactions - Law of conservation of energy, heat of reaction, heat of formation and heat of combustion – related problems, gross and net calorific values, theoretical air and excess air calculations – Proximate and ultimate analysis.

3. **Organic Chemical Technology:** Coal chemicals, coking of coal, coal tar distillation, petroleum refining - atmospheric distillation and vacuum distillation, fluid catalytic cracking, catalytic reforming, petrochemicals from methane and ethylene - Pulp and paper industry, Kraft process - Oils, fats and soaps - sugar and fermentation – synthetic fibres - rubber industries.

4. **Inorganic Chemical Technology:** Water-sources, impurities-treatment-dissolved solids-ion exchange process and Reverse Osmosis (RO) process - Manufacture of chemicals like soda ash, ammonia, Urea, nitric acid, sulphuric acid, phosphoric acid, Super Phosphate and industrial Gases (O2, N2, H2, CO2 and acetylene) - Paints, pigments and varnishes, graphite and silicon carbide and cement.

5. **Fluid mechanics:** Flow of incompressible fluids, Newtonian and non-Newtonian fluids, viscosity, Bernoulli’s theorem, friction losses, friction factor – pressure drop, flow meters, different types of pumps for transportation of fluids, Centrifugal pump, Reciprocating pump, Flow past immersed bodies - packed bed and fluidized bed, fluidization.

8. Thermodynamics and Reaction Engineering: 1st law of Thermodynamics, PVT relationships for gases, 2nd law of Thermodynamics, refrigeration and liquefaction, chemical reaction equilibria - determination of equilibrium constant and conversion, Temperature effect on reactions – Arhenius equation. Basic equations & working of batch, tubular and stirred tank reactors, catalysis.

* * *
MATHEMATICS

1. If \[
\begin{bmatrix}
1 & 1 \\
2 & 3 \\
1 & 1
\end{bmatrix}
\]
is a singular matrix, then the value of x is.

1) -4 2) -3 3) -2 4) 1

2. The number of solutions of the equation \[\tan^2 \theta = \frac{1}{3}\] are

1) 2 2) 3 3) 4 4) None

3. The focus of the parabola \[y^2 - x - 2y + 2 = 0\] is

1) \(\left(\frac{1}{4}, 0\right)\) 2) \((1, 2)\) 3) \(\left(\frac{3}{4}, 1\right)\) 4) \(\left(\frac{5}{4}, 1\right)\)

4. \[\int_{0}^{\pi} \log \tan x \, dx = \]

1) 1 2) 0 3) 2\log 2 4) none

PHYSICS

1. Dimensional formula for Energy is

1) MLT^{-2} 2) ML^2T^{-2} 3) ML^2T^2 4) MLT^2

2. A body is thrown up vertically with a velocity of 19.6 m/s. The maximum height reached by the body is \((g = 9.8 m/s^2)\)

1) 19.6 m 2) 19.6 m/s 3) 19.8 m 4) 19.8 m/s.

3. Gases obey Boyle’s law

1) at high temperature and low pressures only
2) at low temperature and high pressures only
3) at high temperature and high pressures only
4) at all temperatures and all pressures

4. A work done by a man in carrying a load of 30 kg over his head when he travels a distance 5 m in horizontal direction is \((g = 9.8 m/s^2)\)

1) 1470 J 2) 0 J 3) 1470 m 4) 150 J

CHEMISTRY

1. Which of the following orbital has less energy

1) 3P 2) 3d 3) 4d 4) 4f

2. Which of the following element has stable electronic configuration?

1) H 2) He 3) Li 4) Be

3. The pH of 0.001 M NaOH is

1) 1 2) 3 3) 11 4) 14

4. Brass is an alloy of

1) Cu + Sn 2) Cu + Zn 3) Cu + Zn + Ni 4) Fe + Cr + Ni
1. Free energy charge at equilibrium is
 1) zero 2) positive 3) negative 4) indeterminate

2. Bernoulli’s equation is derived based on the following assumptions
 1) The fluid is frictionless and compressible
 2) The fluid is frictionless and incompressible
 3) Flow is steady and frictional
 4) None of the above

3. Economy of the evaporator is defined as
 1) Kgs of water evaporated / hour
 2) Kgs of water evaporated x Kg of steam
 3) Kg of water evaporated / Kg of steam
 4) Kgs of steam / Kg of water evaporated.

4. Total reflux in a distillation column requires minimum
 1) Reboiler load 2) number of plates 3) condenser load 4) all of the above.

5. Molality is defined as the number of gm moles of solute per ___________ of solvent
 1) kg 2) litre 3) m 4) gm

* * *